Энергообеспечение организма способы энергообеспечения

Креатинфосфат

Скажем, бегун рванул со старта стометровки. Это какие-то секунды работы. Но чтобы обеспечить эти секунды мощной работы, необходимо восстановление (или, как говорят, ресинтез АТФ). Причем этот  ресинтез, это энергообеспечение мышечной деятельности происходит при отсутствии кислорода (в т.н. анаэробном режиме) – ведь «транспортная система» просто-напросто не успела еще доставить его к работающим мышцам. За счет чего он происходит?

Оказывается, за счет специального энергетического вещества креатинфосфата, химическая формула которого приведена ниже. Беда в одном – его очень мало, хватает на 10 – 15 секунд мощной мышечной деятельности. Собственно, здесь и ответ на вопрос, почему нельзя в спринтерском темпе пробежать, скажем, два километра.

Аденозинтрифосфорная кислота синтезируется с помощью Креатинфосфата

Креатинфосфата — вещество, за счет которого происходит синтез АТФ

Повторим, эта работа – тоже очень высокой интенсивности – происходит в так называемом анаэробном режиме, когда тот самый ресинтез АТФ идет при условии острого дефицита кислорода.

Фосфатная система ресинтеза АТФ

Быстрый ресинтез АТФ в мышцах идет за счет креатинфосфата (КрФ). Запаса КрФ в мышцах хватает на 6-8 секунд интенсивной работы.

При максимальной нагрузке фосфатная система истощается в течение 10 секунд. В первые 2 секунды расходуется АТФ, а затем 6-8 секунд — КрФ. Через 30 секунд после физической нагрузки запасы АТФ и КрФ восстанавливаются на 70%, а через 3-5 минут — полностью.

Фосфатная система важна для взрывных и кратковременных видов физической активности — спринтеры, футболисты, прыгуны в высоту и длину, метатели диска, боксеры и теннисисты.

Для тренировки фосфатной системы непродолжительные энергичные упражнения чередуют с отрезками отдыха. Отдых должен быть достаточно длительным, чтобы успел произойти ресинтез АТФ и КрФ (график 1).

Какие вещества дают энергию мышцам

Через 8 недель спринтерских тренировок количество ферментов, которые отвечают за распад и ресинтез АТФ, увеличится. После 7 месяцев тренировок на выносливость в виде бега три раза в неделю запасы АТФ и КрФ вырастут на 25-50%. Это повышает способность спортсмена показать результат в видах деятельности, которые длятся не более 10 секунд.

Гликолиз

Давайте продолжим рассказ на примере бегуна. Теперь он бежит двухкилометровую дистанцию. Здесь уже организм для энергообеспечения мышечной деятельности добывает АТФ, используя процесс гликолиза – превращения углеводов, в результате которого, опять-таки, происходит ресинтез АТФ, и образуются конечные кислые продукты – молочная кислота (лактат) и пировиноградная кислота.

Реультат гликолиза - кислые продукты

Молочная и пировиноградная кислоты

В гликолизе используется глюкоза (моносахарид), которая содержится в крови, и гликоген (основной запасной углевод человека), содержащийся в мышцах и печени. С одной стороны, их запасы истощаются довольно быстро, с другой – накопление конечных продуктов гликолиза (тех самых кислот, о которых было сказано в предыдущем абзаце) приводит к нежелательному сдвигу среды организма в кислотную сторону – именно из-за этого появляется усталость.

Глюкоза участвует в гликолизе - синтезе АТФ

Глюкоза

Таким образом, и первый (креатинфосфатный), и второй (гликолиз) пути «добычи» энергии существуют, но дают ее слишком немного. Так в каком же механизме заложен основной ее источник? Что же, такой механизм есть. Он осуществляется при аэробном режиме работы. То есть при таком режиме, когда запросы организма в кислороде полностью удовлетворяются.

Химическая формула гликогена

Гликоген

Кислородная система ресинтеза АТФ

Кислородная (аэробная) система ресинтеза АТФ поддерживает физическую работу длительное время и важна для спортсменов на выносливость. Энергия выделяется при взаимодействие углеводов и жиров с кислородом. Окисление углеводов требует на 12% меньше кислорода по сравнению с жирами. При физических нагрузках в условиях нехватки кислорода энергообразование происходит в первую очередь за счет окисления углеводов.

Углекислый газ выводится из организма легкими.

Вторая фаза: молочная кислота кислород АДФ → АТФ углекислый газ вода

Чем больше кислорода способен усвоить организм человека, тем выше аэробные способности. Высокие показатели лактата во время нагрузки указывают на несостоятельность аэробной системы. Тренировки могут улучшить аэробные способности на 50%. При недостатке кислорода молочная кислота накапливается в работающих мышцах, что приводит к ацидозу (закислению) мышц. Болезненность мышц — это характерная черта нарастающего ацидоза (боль в ногах у велосипедиста или бегуна, боль в руках у гребца).

Энергообеспечение мышечной деятельности. Аэробные и анаэробные факторы спортивной работоспособности

Энергообеспечение организма способы энергообеспечения

Если при гликолизе исходным продуктом выработки энергии служат исключительно углеводы, то при аэробном режиме энергообеспечения мышечной деятельности организм использует все компоненты питания – углеводы, белки, жиры. Именно при аэробном процессе организм добывает энергии почти в двадцать раз больше, нежели при гликолизе. Причем конечные продукты реакций здесь практически нейтральны – вода и углекислый газ, который выводится из организма при дыхании.

На этот счет образное сравнение сделал всемирно известный биохимик А. Ленинджер. Если первые два пути ресинтеза АТФ (анаэробные режимы) он сравнил с работой поршневого двигателя, то третий путь – аэробный, – он  приравнял к тяге двигателя ракетного.

Итак, существуют как бы три уровня энергообеспечения мышечной деятельности. Но помните, как сказано выше, использования креатинфосфата хватает на 10 – 15 секунд работы, гликолиза на 2 – 4 минуты… Способность человека к ресинтезу АТФ в данных случаях совершенно индивидуальны. Точно так же индивидуальны они и при аэробном механизме.

Рубрика “Биохимия”. Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение в уровнях развития аэробной и анаэробных составляющих спортивной работоспособности у представителей различных видов спорта. Особенности биохимических изменений в организме в критических условиях мышечной деятельности.

ЧИТАТЬ ДАЛЕЕ:  BCAA 5000 Powder от Optimum Nutrition как принимать отзывы

Среди ведущих биохимических факторов, определяющих спортивную работоспособность наиболее важными являются биоэнергетические (аэробные и анаэробные) возможности организма. В зависимости от интенсивности и характера обеспечения, работу предложено делить на несколько категорий:

  • анаэробную (алактатную) зону мощности нагрузок;
  • анаэробную (гликолитическую) зону;
  • зону смешанного анаэробно-аэробного обеспечения (преобладают анаэробные процессы);
  • зону смешанного аэробно-анаэробного обеспечения (преобладают аэробные процессы);
  • зону аэробного энергообеспечения.

Анаэробная работа максимальной мощности (10-20 сек.) выполняется в основном на внутриклеточных запасах фосфагена (креатинфосфат АТФ). Кислородный долг невелик, имеет алактатный характер и должен покрыть ресинтез израсходованных макроэргов. Существенного накопления лактата не происходит, хотя возможно вовлечение гликолиза в обеспечение таких кратковременных нагрузок и содержание лактата в работающих мышцах увеличивается.

Работа субмаксимальных мощностей в зависимости от темпа и продолжительности лежит в зонах анаэробного (гликолитического) и анаэробно-аэробного энергетического обеспечения. Ведущим становится вклад анаэробного гликолиза, что приводит к накоплению высоких внутриклеточных концентраций лактата, закислению среды, развитию дефицита НАД и аутоингибированию процесса.

При работе большой мощности преобладает аэробный путь энергообеспечения (75-98 %). Работа умеренной мощности характеризуется практически полным аэробным энергообеспечением и возможностью длительного выполнения от 1 час. до многих часов в зависимости от конкретной мощности. Существует значительное число показателей, используемых для выявления уровня развития, аэробного и анаэробного механизмов преобразования энергии.

Одним из них дают интегральную оценку этих механизмов, другие – позволяют охарактеризовать различные их стороны (скорость развертывания, мощность, емкость, эффективность) или состояние какого-либо отдельного звена или этапа. Наиболее информативными являются показатели, регистрируемые при выполнении тестирующих нагрузок, вызывающих близкую к предельной активацию соответствующих процессов преобразования энергии.

Митохондрии - фабрики по производству АТФ

При этом следует учесть, что анаэробные процессы обладают высокой специфичностью и в наибольшей мере включаются в энергетическое обеспечение только того вида деятельности, в котором спортсмен прошел специальную тренировку. Это значит, что для оценки возможностей использования анаэробных процессов энергообеспечения работы, у велосипедистов наиболее подходят велоэргометрические тесты, у бегунов – бег и т.д.

Большое значение для выявления возможностей использования различных процессов энергообеспечения имеют мощность, продолжительность и характер выполняемого тестирующего упражнения. Например, для оценки уровня развития алактатного анаэробного механизма наиболее подходящими являются кратковременные (20-30 сек.

) упражнения, выполняемые с максимальной интенсивностью. Наибольшие сдвиги, связанные с участием гликолитического анаэробного механизма энергообеспечения работы обнаруживаются при выполнении упражнений длительностью 1-3 мин. с предельной для этой продолжительности интенсивностью. Примером может быть работа, состоящая из 2-4 повторных упражнений, продолжительностью около 1 мин.

, выполняемые через равные или сокращающиеся интервалы отдыха. Каждое повторное упражнение должно выполняться с наибольшей возможной интенсивностью. Состояние аэробных и анаэробных процессов энергообеспечения мышечной работы можно охарактеризовать с помощью теста со ступенчатым увеличением нагрузки до “отказа”.

Показателями, характеризующими уровень анаэробных систем, являются величины алактатного и лактатного кислородного долга, природа которых рассмотрена ранее. Информативными показателями глубины гликолитических анаэробных сдвигов являются максимальная концентрация молочной кислоты в крови, показатели активной реакции крови (рН) и сдвига буферных оснований (ВЕ).

Для оценки уровня развития аэробных механизмов энергообразования используется определение максимального потребления кислорода (МПК) – наибольшего кислородного потребления в единицу времени, которое может быть достигнуто в условиях напряженной мышечной работы. МПК характеризует максимальную мощность аэробного процесса и носит интегральный (обобщенный) характер, так как способность вырабатывать энергию в аэробных процессах определяется совокупной деятельностью многих органов и систем организма, ответственных за утилизацию, транспорт и использование кислорода.

В видах спорта, где основным источником энергии является аэробный процесс, наряду с мощностью, большое значение имеет его емкость. В качестве показателя емкости используется время удержания максимального кислородного потребления. Для этого вместе с величиной МПК определяется значение «критической мощности»- наименьшей мощности упражнения, при которой достигается МПК.

Для этих целей наиболее удобен тест со ступенчатым увеличением нагрузки. Затем (обычно на следующий день) спортсменам предлагается выполнить работу на уровне критической мощности. Фиксируется время, в течение которого может удерживаться «критическая мощность» и изменяется потребление кислорода. Время работы на «критической мощности» и время удержания МПК хорошо коррелируют между собой и являются информативными в отношении емкости аэробного пути ресинтеза АТФ.

Как известно, начальные этапы любой достаточно напряженной мышечной работы обеспечиваются энергией за счет анаэробных процессов. Основная причина этого – инертность систем аэробного энергообеспечения. После развертывания аэробного процесса до уровня, соответствующего мощности выполняемого упражнения, могут возникнуть две ситуации:

  1. аэробные процессы полностью справляются с энергообеспечением организма;
  2. наряду с аэробным процессом в энергообеспечении участвует анаэробный гликолиз.

Исследованиями показано, что в упражнениях, мощность которых еще не достигла «критической», и, следовательно, аэробные процессы не развернулись до максимального уровня, в энергетическом обеспечении работы на всем ее протяжении может участвовать анаэробный гликолиз. Та наименьшая мощность, начиная с которой в выработке энергии на всем протяжении работы, наряду с аэробными процессами, принимает участие гликолиз, получила название “порога анаэробного обмена” (ПАНО) .

Мощность ПАНО принято выражать в относительных единицах – уровнем потребления кислорода (в процентах от МПК), достигнутым во время работы. Улучшение тренированности к нагрузкам аэробной направленности сопровождается повышением ПАНО. Значение ПАНО зависит в первую очередь от особенностей аэробных механизмов энергообразования в частности, от их эффективности.

Так как эффективность аэробного процесса может претерпевать изменения, например, за счет изменения сопряженности окисления с фосфорилированием, представляет интерес оценки этой стороны функциональной готовности организма. Наиболее важны внутри индивидуальные изменения этого показателя на разных этапах тренировочного цикла.

ЧИТАТЬ ДАЛЕЕ:  Есть ли вред белковой диеты для организма или только польза

Оценить эффективность аэробного процесса можно также в тесте со ступенчатым увеличением нагрузки при определении уровня кислородного потребления на каждой ступени. Итак, участие анаэробных и аэробных процессов в энергетическом обеспечении мышечной деятельности определяется, с одной стороны, мощностью и другими особенностями выполняемого упражнения, с другой – кинетическими характеристиками (максимальная мощность, время удержания максимальной мощности, максимальная емкость и эффективность) процессов энергообразования.

Рассмотренные кинетические характеристики зависят от совместного действия множества тканей и органов и по-разному изменяются под воздействием тренировочных упражнений. Эту особенность ответной реакции биоэнергетических процессов на тренировочные нагрузки необходимо учитывать при составлении тренировочных программ.

В организме постоянно поддерживается энергетический баланс поступления и расхода энергии. Жизнедеятельность организма обеспечивается энергией за счет анаэробного и аэробного катаболизма (процесса расщепления сложных компонентов до простых веществ), поступающих с пищей белков, жиров, углеводов. При окислении выделяется; а) 1г.белка, 4,1 ккал энергии, б) 1г.углеводов, 4,1 ккал, в) 1г.жира 9,3 ккал.

Лактатный и алактатный механизмы энергообеспечения

Прсле определенного уровня интенсивности работы организм переходит на бескислородное (анаэробное) энергообеспечение, где источник энергии — исключительно углеводы. Интенсивность мышечной работы резко снижается из-за накопления молочной кислоты (лактата).

Ресинтез АТФ идет за счет лактатного механизма:

  • несколько минут в начале любого упражнения пока легкие, сердце и системы транспорта кислорода не приспособятся к потребностям нагрузки;
  • при беге на 100, 200, 400 и 800 м, а также во время любой другой интенсивной работы, длящейся 2-3 мин;
  • в беге на 1500 м вклад аэробного и анаэробного энергообеспечения — 50/50;
  • при кратковременном увеличении интенсивности работы — при рывках, преодолении подъемов, во время финишного броска, например, на финише марафона или велогонки.

Лактат может быть в 20 раз выше нормы. Максимальная концентрация молочной кислоты достигается в беге на 400 м. С увеличением дистанции концентрация лактата снижается (График 2).

  • Мышечная усталость. Если начать длительный бег в высоком темпе или рано приступить к финишному рывку, мышечная усталость, вслед за ростом концентрации лактата, не даст спортсмену выиграть гонку.
  • Ацидоз (закисление) мышечных клеток и межклеточного пространства. Может потребоваться несколько дней, чтобы ферменты снова нормально функционировали и аэробные возможности полностью восстановились. Частое повторение интенсивных нагрузок (без достаточного восстановления) приводит к перетренированности.
  • Повреждение мышечных клеток. После напряженной тренировки в крови повышается уровень мочевины, креатинкиназы, аспартатаминотрансферазы (АсАТ) и аланинаминотрансферазы (АлАТ). Это указывает на повреждение клеток. Чтобы показатели крови снова пришли в норму требуется от 24 до 96 ч. В это время тренировки должны быть легкими — восстановительными.
  • Нарушение мышечного сокращения влияет на координацию. Тренировки на технику не следует проводить если лактат выше 6-8 ммоль/л.
  • Микроразрывы. Незначительные повреждения мышц могут стать причиной травмы при недостаточном восстановление.
  • Замедляется образование КрФ. Лучше не допускать высоких показателей лактата во время спринтерских тренировок.
  • Снижается утилизация жира. При истощение запасов гликогена энергообеспечение окажется под угрозой, поскольку организм будет не способен использовать жир.

На нейтрализацию половины накопившейся молочной кислоты требуется около 25 минут; за 1 час 15 минут нейтрализуется 95% молочной кислоты. Активное восстановление («заминка») очень быстро снижает лактат. В восстановительной фазе лучше выполнять непрерывную, а не интервальную работу (График 3).

В прошлой статье я вам рассказал какие бывают пути ресинтеза АТФ в мышцах, и разобрал аэробный путь. Сегодня я продолжу разговор и расскажу уже про два анаэробных способов ресинтеза АТФ – лактатный(гликолитический) и алактатный(креатинфосфатный). В отличии от аэробного, эти способы не требует участие кислорода.

И так, если при аэробном способе источником энергии могли быть белки, жиры, углеводы, которые превращались в промежуточный продукт ацетил-КоА и далее в энергию, то в этом случае используются только запасы глюкозы(гликоген).

Энергообеспечение организма способы энергообеспечения

Тут нужно пояснить. Гликоген – это депо глюкозы, для простоты понимания представьте: глюкоза это одна молекула, а гликоген – это много молекул глюкозы. И во время мышечной работы тратится гликоген, который запасен в мышцах. Представьте холодильник полный яиц, одной яйцо – одна молекула глюкозы, один холодильник – одна молекула гликогена. Когда вам нужна энергия, вы берёте яйцо. Так происходит и в мышцах.

Если вернуться к яйцам, у вас есть холодильник(гликоген) с яйцами(глюкоза), достать их оттуда можно только ложкой(фосфорная кислота). Вы в этой чудной истории – мышца. Достали, отнесли на сковородку, начали жарить – это те реакции распада глюкозы до пирувата. Далее едим – получаем энергию.

Нужно чётко понимать, что этот путь ресинтеза АТФ достигает максимальной мощности только когда вы тренируетесь, т.е. когда АТФ тратится очень быстро и много. И тренируетесь за пределами аэробной зоны, т.е. за порогом анаэробного обмена. Проще говоря по мере возрастания нагрузки, в какой-то момент аэробный путь не справиться и АТФ будет не хватать, тут сразу начнёт подключаться лактатный механизм.

Максимальная мощность – 750-850 кал/мин*кг, как вы видите это почти вдвое выше чем при аэробном. Объясняется это тем, что мышечная клетка имеет большие запасы гликогена, а лактатный механизм может использовать только глюкозу. И на выход глюкозы из депо не тратится много времени, плюс нет потребности в кислороде.

Время развертки – 20-30 секунд, это объясняется тем, что все субстраты необходимые для действия находятся в относительной близости друг к другу. Глюкоза, ферменты – всё это находится в цитоплазме миоцита.

ЧИТАТЬ ДАЛЕЕ:  GeneticLab Omega 3 PRO свойства состав инструкция цена

Время работы с максимальной мощностью – 2-3 минуты. Почему так мало, по сравнению с аэробным механизмом? Во-первых, этот механизм быстро даёт энергию и так же быстро и неэкономично использует гликоген – запасы кончаются. Во-вторых накапливается лактат, что закисляет клетку и снижает активность ферментов, а это приводит к снижению скорости всех реакций.

Не экономичный, как я говорил три атф за одну молекулу глюкозы, очень не выгодный для организма обмен. Это приводит к быстрому концу запасов гликогена.

Образование лактата, что приводит к увеличению кислотности саркоплазмы, т.е. к сдвигу рН, а ферменты гликолиза имеют белковую природу, в кислой среде они меняют свою конформацию и теряют активность.

Большая максимальная мощность, которая не требует кислорода и участия митохондрий.

Относительно быстрое время развёртки, по причине как я уже говорил, наличие всех участников реакций в одном месте.

В этом случае главным действующим веществом будет креатинфосфат, который состоит из креатина и фосфатной группы и обладает большим запасом энергии. Содержание в мышцах – 15-20 ммоль/кг.

Вторым действующим лицом в этом случае будет АДФ – аденозиндифосфат – это вещество получается при гидролизе АТФ. После передачи энергии АТФ превращается в АДФ.

Катализатором(тот кто запускает) этой реакция является фермент креатинкиназа, иногда эту реакцию называют креатинкиназной. Когда мы начинаем тренироваться активность этого фермента заметно растёт(из за увеличения содержания ионов кальция в клетке и других причин) и следовательно ускоряется реакция.

Если систематически не проводить тренировок в таком режим(это тренировки на силу) то запасы КрФ начинают падать, т.к. это соединение непрочное, от него легко отщепляется фосфорная кислота и образуется креатинин, креатинин никак не используется организмом и выводится с мочой. Эта реакция не обратима.

По моему пора привести конкретный пример, как работает этот способ. Возьмём человека у которого одноповторный максимум в приседе 100 кг. И он пришёл на тренировку и хочет тренироваться в алактатном режиме, как это сделать? Этот механизм ресинтеза АТФ включается когда необходимо больше количество АТФ сразу же, буквально на первых же секундах работы. Т.е.

этому человеку нужно будет приседать с практически максимальным весом, что бы импульм из головы к мышцам был сильным, допустим это 80 кг на 5 раз. Он начинает приседать -{amp}gt; вес тяжелый, почти его максимум -{amp}gt; значит нужно много АТФ и сразу -{amp}gt; столько АТФ может дать только алактатный механизм, значит он и запускается -{amp}gt;

он продолжает приседать -{amp}gt; второе,третье повторение -{amp}gt; АТФ тратится, образуется АДФ -{amp}gt; КрФ вступает в реакцию с АДФ образуя АТФ -{amp}gt; КрФ начинает заканчиваться -{amp}gt; человек делает 5 повторение и ставит снаряд. И так проходят тренировки на силу – максимальная мощность за короткое время – это Креатинфосфатная реакция, но хватает её не на долго.

Максимальная мощность – 900-1100 кал/мин*кг. Как видите это самый мощный механизм. Это так потому что катализатор этого процесса креатинкиназа является очень активным ферментом и сама реакция креатинкиназная обладает большой скоростью.

Время развертки – 1 – 2 секунды. Прямых запасов АТФ в мышцах хватает как раз на 1 – 2 секунды, к моменту как они закончатся, КрФ выйдет на максимум. Такая скорость объясняется теми же причинами.

Энергообеспечение организма способы энергообеспечения

Время работы с максимальной мощностью – 8 – 10 секунд, как видите очень мало и связано это с тем, что запас КрФ в мышцах невелик.

Те кто тренировался в зале, наверняка слышали следующее: 3-5 повторений силы, 8-12 – объём, больше 12 – выносливость. Числа кончено приблизительны, но они имеют под собой научную основу. Вес, который ты можешь поднять на 3-5 раз, включит в твоём организме КрФ путь ресинтеза и рост объёма мышц в этом случае будет за счёт увеличение количества миофибрилл и КрФ, 8-12 раз – будут на самом все три механизма, но преобладать будет гликолитический, в этом случае рост за счёт саркоплазматической гипертрофии, т.е.

в мышцах будет накапливаться гликоген, ферменты гликолизы и разные белки. Больше 12 раз и до 50 – тоже будут все механизмы, но в этом случае аэробный путь выйдет на больший максимум чем в других случаях. Гипертрофия тут капиллярная, увеличивается количество и размер митохондрий, растёт МПК, способности систем крови, увеличивается количество капилляров в мышцах и т.д.

Энергетические запасы

Таблица 1.1 Порядок подключения энергетических систем при физической нагрузке максимальной мощности. Анаэробный — без участия кислорода; аэробный — с участием кислорода. Алактатный — молочная кислота не вырабатывается; лактатный — молочная кислота вырабатывается.

Оцените статью
DaDaFitness
Adblock
detector